Secure and Scalable Statistical Computation of Questionnaire Data in R
نویسندگان
چکیده
منابع مشابه
Secure and scalable deduplication of horizontally partitioned health data for privacy-preserving distributed statistical computation
BACKGROUND Techniques have been developed to compute statistics on distributed datasets without revealing private information except the statistical results. However, duplicate records in a distributed dataset may lead to incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset, secure deduplication is an important preprocessing ste...
متن کاملScalable Secure Multiparty Computation
We present the first general protocol for secure multiparty computation which is scalable, in the sense that the amortized work per player does not grow, and in some natural settings even vanishes, with the number of players. Our protocol is secure against an active adversary which may adaptively corrupt up to some constant fraction of the players. The protocol can be implemented in a constant ...
متن کاملScalable and Unconditionally Secure Multiparty Computation
We present a multiparty computation protocol that is unconditionally secure against adaptive and active adversaries, with communication complexity O(Cn)k + O(Dn)k + poly(nκ), where C is the number of gates in the circuit, n is the number of parties, k is the bitlength of the elements of the field over which the computation is carried out, D is the multiplicative depth of the circuit, and κ is t...
متن کاملScalable Secure Computation of Statistical Functions with Applications to k-Nearest Neighbors
Given a set S of n d-dimensional points, the k-nearest neighbors (KNN) is the problem of quickly finding k points in S that are nearest to a query point q. The k-nearest neighbors problem has applications in machine learning for classifications and regression and and also in searching. The secure version of KNN where either q or S are encrypted, has applications such as providing services over ...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2016
ISSN: 2169-3536
DOI: 10.1109/access.2016.2599851